Understanding Equality

Quick Review

> Each of these scales is balanced.
The expression in one pan is equal to the expression in the other pan.

$$
\begin{aligned}
& 48 \div 8=6 \text { and } \\
& 2 \times 3=6 \\
& \text { So, } 48 \div 8=2 \times 3 \\
& 56+30=86 \text { and } \\
& 100-14=86 \\
& \text { So, } 56+30=100-14
\end{aligned}
$$

- When we add 2 numbers, their order does not affect the sum.

This is called the commutative property of addition.
$7+5=5+7$
$a+b=b+a$

- When we multiply 2 numbers, their order does not affect the product.

This is called the commutative property of multiplication.
$6 \times 3=3 \times 6$
$a \times b=b \times a$

Try These

1. Rewrite each expression using a commutative property.
a) $9+6$
b) 7×4 \qquad
c) $751+242$
d) 27×8
2. Are these scales balanced? How do you know?

Practice

1. Work with a partner.

Write an expression in one pan of a balance scale.
Your partner writes a different expression to balance the scale.
Continue with each balance scale. Switch roles at each turn.
a)

b)

c)

d)

2. Draw a line to join pairs of expressions that balance.
a)

Expressions	
8×9	2×53
$522 \div 9$	$24+76$
$75+31$	$314-242$
10×10	29×2

b)

Expressions	
$764-320$	$4000-48$
76×52	$18 \div 3$
$36 \div 6$	5×25
$52+73$	4×111

Stretch Your Thinking

Write 3 equal expressions for each expression below.
a) $57+46-31$
b) $45 \times 2+17$
c) $425 \div 5+36$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Keeping Equations Balanced

LESSON

Quick Review

- We can model this equation with counters: $3+3=4+2$

Multiply each side by 2 .
$6 \times 2=6 \times 2$

When each side of an equation is changed in the same way, the values remain equal. This is called the preservation of equality.
> Suppose we know $8=4 \mathrm{~m}$.
We can model this equation with paper strips.

To preserve the equality, we can subtract the same number from each side.
$8-2=4 m-2$

So, $8-2=4 m-2$ is an equivalent form of $8=4 m$.

Try These

1. Model each equation with counters.

Use counters to model the preservation of equality. Record your work.
a) $3+2=1+4$
b) $18 \div 3=3 \times 2$

Practice

1. Use addition to preserve the equality of each equation.
a)

b)

2. Use subtraction to preserve the equality of each equation in question 1.
a) \qquad
b)
\qquad
3. a) Write an equation for each diagram.
i) $\quad 2$

n	n	n	n

ii)

4	
y y	

b) Use multiplication to preserve the equality of each equation. Record your work.
i)
ii) \qquad

Stretch Your Thinking

Apply the preservation of equality.Write an equivalent form of the equation. Use a different operation for each part.
a) $5 y=20$
b) $20 \div 5=8-4$
\qquad
\qquad
c) $8 \times 6=12 \times 4$
d) $5+19=6 s$
\qquad

