

Theoretical Probability

Quick Review

This table shows the possible outcomes when 2 dice are rolled and the numbers are added.

F	ro	m	th	1e	ta	h	e:

- There are 36 possible outcomes.
- 18 outcomes are odd sums.
- 18 outcomes are even sums.

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

We say: The **probability** of getting an odd sum is 18 out of 36. We write the probability of an odd sum as a fraction: $\frac{18}{36}$

This probability is a theoretical probability.

Theoretical probability = Number of favourable outcomes
Number of possible outcomes

The probability of an odd sum is $\frac{18}{36}$. The probability of an even sum is $\frac{18}{36}$.

Since $\frac{18}{36} = \frac{18}{36}$, the probability of getting an odd sum or an even sum is equally likely.

Try These

1. A bag contains 10 white marbles and 8 black marbles. A marble is picked at random. What is the probability that a black marble is picked? _____

2. 16 girls and 13 boys put their names in a bag.

One name is drawn from the bag. What is the probability that a boys name will be drawn?

Practice

- **1.** A box contains 8 red apples, 10 green apples, and 12 yellow apples. Without looking, you pick an apple from the box.
 - a) What are the possible outcomes?

b) How many apples are in the box?	
D) HOW Many apples are in the pox!	

- c) What is the theoretical probability that the apple is:
 - i) red? _____
- **ii)** green? _____
- iii) yellow? _____
- **2.** Suppose you spin the pointer on this spinner. What is the probability of each outcome?
 - a) The pointer lands on 1. _____
 - **b)** The pointer lands on 2.
 - c) The pointer lands on 3 or 4.
 - d) The pointer does not land on 3. _____

- **3.** Rafik spins the pointer on this spinner.
 - a) List the possible outcomes. _____
 - **b)** What is the probability of each outcome?
 - i) The pointer lands on a prime number? _____
 - ii) The pointer lands on a composite number? ____
 - iii) The pointer lands on a number greater than 10? ____

Stretch Your Thinking

Draw and colour marbles in the bag so that the probability of picking a green marble is greater than the probability of picking a red marble, but less than the probability of picking an orange marble.

Experimental Probability

Quick Review

Α

В

A

➤ Saul spun the pointer on this spinner 10 times. The theoretical probability of landing on the letter A is $\frac{5}{10}$, or $\frac{1}{2}$. Here are Saul's results.

Letter	Α	В	С	D
Number of Times	6	1	2	1

The experimental probability is the likelihood that something occurs based on the results of an experiment.

Experimental probability = $\frac{\text{Number of times an outcome occurs}}{\text{Number of times the experiment is conducted}}$

The experimental probability of landing on the letter A is $\frac{6}{10}$, or $\frac{3}{5}$. This is different from the theoretical probability.

Saul combined the results from 10 experiments.

Letter	Α	В	С	D
Number of Times	51	19	8	22

The experimental probability of landing on the letter A is $\frac{51}{100}$.

The experimental probability is close to the theoretical probability. The more trials we conduct, the closer the experimental probability may come to the theoretical probability.

Try These

- 1. Look at the table of Saul's individual results. What is the experimental probability of landing on:

- i) B? ____ ii) C? ___ iii) D? ___ iv) B or C? ___ v) A or D? ___
- **2.** Look at the table of Saul's combined results.

What is the experimental probability of landing on:

- i) B? ____ ii) C? ___ iii) D? ___ iv) B or D? ___

Practice

1. Tatiana spins the pointer on this spinner several times.

Here are her results.

Α	В	С
 	++++ ++++ ++++	

- a) How many times did Tatiana spin the pointer? _____
- **b)** What fraction of the spins were A? _____ B? ____

2. A coin is tossed 100 times.

Heads showed 43 times and tails showed 57 times.

- a) What are the possible outcomes? _____
- **b)** What is the experimental probability of the tosses showing:
 - i) heads? _____ ii) tails? _____
- c) What is the theoretical probability of the tosses showing:
 - i) heads? _____ ii) tails? _____

Stretch Your Thinking

- a) What is the theoretical probability of the pointer landing on:
 - i) A? _____ ii) B? ____
- **b)** Use an opened paper clip as a pointer. Spin it 100 times. Record the results.

A	В

- c) What is the experimental probability of the pointer landing on:

 - i) A? _____ ii) B? ____